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Featured Application: Mission management for cooperative autonomous robotics.

Abstract: Almost every research project that focuses on the cooperation of autonomous robots for
underwater operations designs their own architectures. As a result, most of these architectures are
tightly coupled with the available robots/vehicles for their respective developments, and therefore
the mission plan and management is done using an ad-hoc solution. Typically, this solution is tightly
coupled to just one underwater autonomous vehicle (AUV), or a restricted set of them selected for
the specific project. However, as the use of AUVs for underwater operations increases, there is the
need to identify some commonalities and weaknesses of these architectures, specifically in relation
to mission planning and management. In this paper, we review a selected number of architectures
and frameworks that in one way or another make use of different approaches to mission planning
and management. Most of the selected works were developed for underwater operations. Still, we
have included some other architectures and frameworks from other domains that can be of interest
for the survey. The explored works have been assessed using selected features related to mission
planning and management, considering that underwater operations are performed in an uncertain
and unreliable environment, and where unexpected events are not strange. Furthermore, we have
identified and highlighted some potential challenges for the design and implementation of mission
managers. This provides a reference point for the development of a mission manager component to
be integrated in architectures for cooperative robotics in underwater operations, and it can serve for
the same purposes in other domains of application.

Keywords: mission management; mission plan; mission plan adaptation; cooperative robotics;
system architectures; agent virtualization; mission plan dispatching and execution

1. Introduction

In recent years, the use of autonomous underwater vehicles (AUVs) for cooperative robotics in
underwater operations has increased. This interest includes their use in military interventions [1–3],
scientific interventions like the survey and exploration of the Arctic Ocean [4,5], and other marine
interventions like, for instance, underwater infrastructure maintenance [6–8] and oil spill response [9–11].
The essential information structure for these operations has been identified as the mission. Kothari et al.
defined a mission as a set of goals to be achieved [12], and a mission plan as the schema for achieving
the goals of a mission, expressed in terms of tasks like maneuvers, communication, sensors, and
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payload primitives. Fernández –Perdomo et al. described a mission as the set of tasks a vehicle must
execute [13]. In their proposal, they described the mission life cycle as the process depicted in Figure 1.
A mission is first created by a human operator, either by hand or using the aid of an automated
planning application. The created mission is validated, and then transferred to the vehicle, where it is
executed. The proposed life cycle includes an optional step for replaying the mission in a simulator for
offline analysis.
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Mission management can then be defined as the set of processes and techniques to control the
mission life cycle. The study of mission management for AUV interventions has attracted the interest
of the research community, but mostly focused on the creation, and maybe the validation of the
mission plan.

The definition of the mission plan is equivalent to the definition of a plan as a sequence of
actions to achieve a goal used in AI literature [14]. And consequently it is common that mission plans
for underwater operations are generated with the aid of automated planning algorithms adapted
from the AI literature. For instance, a comprehensive survey of mission planning solutions used for
autonomous marine vehicle fleets was done by Thompson and Guihen in [15]. In their work, they
restricted the planning paradigms applicable to marine operations to the following four state-action
planning methods:

• Deterministic planners: the most common and basic ones, that typically assume that he execution
environment does not change at all.

• Multi-Agent planners: where the agents are individual vehicles participating in a mission.
• Temporal planners: where specified goals must be reached in a finite time.
• Non-Deterministic planners: referred to as planners working with partially observable Markov

decision processes, and that provide a policy to be used to map any state to a suitable action.

Other works published related to mission management include the survey on autonomous mission
planning and management systems done by Atyabi et al. for AUVs and Unmanned Aircraft Vehicles
(UAVs) [16]. Their survey focuses mainly on the autonomy and the situation awareness features of
the selected architectures. Moreover, most of the architectures included in their work are focused
on the mission planning part, including route planning and re-planning. MahmoudZadeh et al.
conducted another survey on the state-of-the-art for autonomous mission planning and task managing
for unmanned vehicles [17]. Again, most of the cited architectures were focused on topics related to
the mission planning part, including rout planning, resource allocation and re-planning.

Nevertheless, we find the need to address other aspects related to mission management beyond
the creation of the plan.

First of all, still related to the mission planning, the AI literature related to automated planning
includes several specifications for how to describe a plan. However, usually the literature about
mission planning and management architectures for cooperative robotics operations do not cover this.

Further, we have to take into account that the underwater environment is usually considered as
unreliable and uncertain. And when there is uncertainty, an agent cannot ensure that it will be able to
achieve the expected goals [18]. Consequently, mission management architectures should take into
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account how to manage unexpected and unforeseen events. Typically, this has been done by delegating
the responsibility to adapt to the new situation to the AUV, or to abort the mission [19]. That is because
the classical transference of the mission plan was performed by loading the full mission into the vehicle
before being launched [20]. However, the advances in underwater communications [21] may enable
other possibilities. In particular, it is of interest to know how self-adaptation is considered from the
global mission management point of view. Especially in relation to the use of decentralized control
patterns [22] that include both the autonomous vehicles and a global management component.

The aforementioned improvement in underwater communications also enables other mechanisms
for dispatching the mission plan from the global mission management to the AUVs participating in a
mission, thus constituting another topic of interest not covered in previous surveys.

Finally, the availability of a greater variety of vehicles with different capabilities is increasing.
Consequently, the possibility of using different vehicles with different mission management capabilities
in the same mission is also increasing. This situation presents an opportunity for the use of virtualization
mechanisms in the mission management architectures that can enable the integration of legacy systems
with novel ones.

In summary, the main contributions for this survey can be described as:

• An identification of a set of four features of interest that a mission manager for cooperative robotics
should take into consideration, specially, but not restricted to underwater operations, namely:

# Mission plan specification.
# Use of self-adaptive models.
# Use of virtualization.
# Mission plan dispatching and execution.

• A categorization of the four features identified for allowing the assessment of the selected architectures.
• A survey of a selected number of architecture proposals for cooperative robotics, highlighting

their most relevant characteristics.
• A discussion of the open issues found.
• A discussion of possible future works that can be carried out so that the quality of future mission

management architectures will be improved.

The rest of this paper is organized as follows. Section 2 provides a comprehensive description of
the selected features to be compared among the selected mission management architectures. Section 3
provides a description of the selected architectures, paying special attention to the features introduced
in Section 2. Section 4 provides a summary comparison of the reviewed architectures, and a discussion
of their strengths and weaknesses. Finally, Section 5 covers the conclusions from the survey and
introduces some possible future works worth for exploration.

2. Selected Features for a Mission Manager for Underwater Cooperative Robotics Operations

In this section, we discuss in detail the parameters that we have offered in the introduction.
In particular, there are four different features that have been defined as of interest for the design of a
mission planning and management architecture. To ensure the assessment is as objective and accurate
as possible, we have defined a set of categories for each of the selected features.

It is important to recall that these categories allow us to provide a classification for the studied
architectures. But they do not establish a ranking system.

2.1. Mission Plan Specification

As stated in the introduction, the mission is the essential information structure for underwater
operations. Its main constitutive part, the mission plan, matches the formal definition of a plan as
a sequence of actions to achieve a goal [14]. In consequence it is common to use an AI automated
planning approach to generate the mission plan.
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Whether the mission plan follows a deterministic or a non-deterministic paradigm, with or
without temporal constraints, and considering one or multiple agents, from an architectural point of
view it is important to know how the mission plan is specified. In this survey, we have taken into
account the selection of planning paradigms from Thompson and Guihen [15], with the additional
consideration of the use of a hierarchical task description, for instance, a hierarchical task network
(HTN) [23].

The mission plan specification feature is categorized regarding the planning paradigm identified
in the surveyed architecture, with special attention to the way the mission plan is described. For the
determination of the categories, we have considered the already existing formal description languages
commonly used for automated planning, like: the Stanford Research Institute Problem Solver
(STRIPS) [24]; the Planning Domain Definition Language (PDDL) [25]; the Relational Dynamic
influence Diagram Language (RDDL) [26]; or any ad-hoc specification created for the architecture
proposal. For PDDL, we also take into consideration any of its updates, like PDDL 2.1 [27], PDDL
2.2 [28] and PDDL 3.0 [29–31], and extensions, like the Probabilistic PDDL (PPDDL) [32] and the
Multi-Agent PDDL (MA-PDDL) [33].

The categories we have identified for this feature are summarized in Tables 1 and 2. We have
decided to split the assessment into two different categorical groups, as the categories from the second
group can be present or absent indistinctly in any of the categories of the first group. The first group
focuses on the use of deterministic or non-deterministic planning paradigms. A graphical scheme for
the proposed assignment of categories for the first group is shown in Figure 2, and the description of
suggested assessment is summarized in Table 1.
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Table 1. Mission plan specification assessment (1st group).

Category Description
1 The architecture proposal does not describe the way the mission plan is specified.
2 The architecture proposal follows a deterministic approach and uses an ad-hoc mission

plan specification, or proposes a new one.
3 The architecture proposal follows a deterministic approach and uses either STRIPS, any of

the PDDL versions or any other formal description language already defined for
automated planning.

4 The architecture proposal follows a non-deterministic approach and uses an ad-hoc
mission plan specification or proposes a new one.

5 The architecture proposal follows a non-deterministic approach and uses PPDDL, RDDL or
any other formal description language already defined for automated planning.
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Table 2. Mission plan specification additional categories assessment (2nd group).

Category Description
M The architecture proposal includes a multi-agent approach.
T The architecture proposal includes a temporal constraint approach.
H The architecture proposal includes a hierarchical task network.

The second assessment group focuses on the use of other planning paradigms that overlap
the assessment made in the first group. Here, we included the aforementioned multi-agent,
temporal constraint and hierarchical tasks paradigms that can be used both for deterministic and
non-deterministic planning. In this case, the category is identified by a letter that is added to the first
group category according to the assessment made. For instance, an architecture that uses deterministic
planning with a formal specification and a multi-agent approach with temporal constraints will
be categorized as “3MT”. The description of the assessment categories for this second group is
summarized in Table 2.

2.2. Use of Self-Adaptive System Models

In an uncertain and unreliable environment like the underwater one it is common to design
mission management architectures considering self-adaption to unforeseen events in order to improve
the reliability of the vehicles entrusted with the execution of a mission plan. To better understand this
concept, it is interesting to know how a self-adaptive system has been usually defined in the literature.
In [34] Martin et al. defined an adaptive system as the set of elements interacting with each other
that has at least one process controlling the system adaptation to increase its efficiency to achieve its
goals. Weyns et al. described in [22] a self-adaptive system as that kind of system that has the ability
to adapt itself to the changes in its execution environment and internal dynamics with the purpose
of continuing to achieve its goals. Salehie et al. [35] defined self-adaptive systems as those systems
that aim to adjust various artifacts or attributes in response to changes in the self or in the context of
the system.

There are several self-adaptive models that have been formalized in the literature regarding
the design of self-adaptive systems: the Observe, Orient, Decide, Act loop (OODA) [36]; the Event,
Condition, Action (ECA) [37]; the Sense, Plan, Act (SPA) [38]; and the autonomic manager model [39,40],
better known as MAPE-K due to the names of its four functional parts (Monitor, Analyze, Plan, Execute),
and the use of shared knowledge among them. The OODA loop has been used as a reference in one of
the architectures included in this survey, while the ECA and the SPA are typical self-adaptive models
used in robotics. However, the most prominent model in recent years, mostly in control systems, has
been the MAPE-K. The MAPE-K model defines the concept of an autonomic manager as a component
that implements an intelligent control loop consisting in four main functional parts [40], as shown in
Figure 3:

• A Monitor function that gathers the information of the managed resource through the sensors.
• An Analyze function that correlates the gathered information from the Monitor to known situations.
• A Plan function that provides the relevant actions to be executed according to the results from the

Analyze function.
• An Execute function that dispatches and control the execution of the actions resulting from the

Plan function through the effectors of the autonomic manager.

As shown in Figure 3 the MAPE-K includes also a Knowledge function that is shared with the
Monitor, Analyze, Plan and Execute functions in the loop.

In regards of the design of a self-adaptive system Salehie et al. [35] proposed the following
questions to obtain their essential requirements:

• Where, addressing which layer/component is required to do the change.
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• When, addressing at what time it is needed to apply a change.
• What, addressing what attributes or components of the system can and should be changed by

means of adaptation, and what is required to be changed.
• Why, addressing the motivations of building a self-adaptive system.
• Who, addressing the level of automation and human involvement in the self-adaptive system.
• How, addressing how the adaptable systems can be changed and which adaptation actions can be

appropriate for each situation.Appl. Sci. 2020, 10, 1086 6 of 36 
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Concerning underwater cooperative robotics operations, the responses to when, what, why, and
how can be answered as follows: whenever an unforeseen event happens preventing the achievement
of a goal in a mission plan (when); whatever is possible, needed and has best chances to solve the
situation (what); to still have chances of fulfilling the mission goals (why); and by any means available
and suitable (how). The response to the “who” question, as we are talking about automated systems,
is usually answered as the automated system. However, the response to the “where” question requires
us to know a little more about how underwater interventions are typically managed. In traditional
underwater interventions the mission plan was fully loaded into the AUVs to be launched, and once
loaded, the AUVs were deployed on the sea surface where they remain waiting for the start command
to start the mission [19,20]. If we just follow this approach, the response to the “where” question is
clearly that the component responsible to do the required changes must be the AUV.

Although, in recent years there has been an improvement in the communications between the
AUVs and the control stations where a global mission control can be running [21,41], enabling other
possible responses to the “where” question. For instance, the self-adaptation could be considered:

• Only at the vehicle level.
• Only at the global mission control level.
• Both at the vehicle and the global mission control level, independently.
• Both at the vehicle and the global mission control level, following a decentralized control pattern.

The use of self-adaptation loops at different levels matches the MAPE-K proposal, where a
hierarchy of autonomic managers is possible. Figure 4 illustrates an example of a two-level hierarchy.
In the presented example there is one autonomic manager at the high level, and three autonomic
managers at the low-level (keep in mind that there could be any number of levels and autonomic
managers per level, as this is just an example). In this example each autonomic manager is able to
perform self-adaptation using the MAPE-K loop individually. However, they could also be using
a decentralized control pattern enabling the cooperation between managers at different levels [22].
A practical use case for this example could be a global mission manager using self-adaptation at



www.manaraa.com

Appl. Sci. 2020, 10, 1086 7 of 34

the high level, and a set of AUVs doing their own mission management with self-adaptation at the
vehicle level.
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Iglesia et al. [42] proposed a set of formal templates for the design of self-adaptive systems, and
Weyns et al. [22] proposed a graphical notation for patterns of decentralized control for self-adaptive
systems, both using MAPE-K as the core base. The patterns introduced by Weyns et al. imply
the interaction between the functional components of the MAPE-K loop from different autonomic
managers in a given hierarchy. The knowledge function in these patterns is considered apart, as each
autonomic manager can use its own internal knowledge, and the hierarchical distribution can also
provide additional shared knowledge repositories within the different layers, or even across them.

The work of Weyns et al. also included the identification of five basic patterns:

• Coordinated control: where the decision of how to adapt is made cooperatively among all the
autonomic managers.

• Information sharing: where each autonomic manager does the adaptation locally, but requires
information from other autonomic managers to know how the locally performed adaptation will
affect them.

• Slave/master: where the monitor and execution functions are performed at one level (slave), and
the analyze and plan functions are performed at another level (master).

• Regional planning: where the hierarchical distribution is divided in autonomic regions. Each region
consists of a number of autonomic managers with a shared plan function that provides the
self-adaption planning functionalities for the region.

Hierarchical control, where there is a hierarchical distribution of the autonomic managers at
different levels of abstraction, each one focused on different concerns.

For this survey we have categorized the use of self-adaptation in the explored architectures as
illustrated in Figure 5. The first category is used for architectures that do not provide a description
of the use of any self-adaptation model, and where we have not been able to identify one from the
proposal. The second category is for architectures that only consider the use of self-adaptation models
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at the vehicle mission management level, while the third category is for architectures that only consider
the use of self-adaptation at the global mission management level. The fourth and fifth categories are
for architectures that use self-adaptation models at both levels of management, independently or using
a decentralized control pattern respectively. Table 3 summarizes the assessment for the self-adaptation
feature as we have defined it.
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Table 3. Self-adaptation assessment.

Category Description
1 Self-adaptation is not mentioned and has not been identified in the proposed architecture.
2 Self-adaptation is only considered at the vehicles level.
3 Self-adaptation is only considered at the global mission management level.
4 Self-adaptation is considered both at the vehicles and the mission management levels, but

done independently.
5 Self-adaptation is considered both at the vehicles and the mission management levels, in a

cooperative way using a decentralized control pattern.

2.3. The Use of Heterogenous Vehicles: Virtualization

Cooperative underwater operations using multiple AUVs require their mission management
capabilities to be taken into account by mission management architectures. A simplistic approach
could be that participation in cooperative missions be limited to AUVs with homogeneous capabilities
tightly represented within the mission management architecture. However, the increasing interest in
the use of AUVs for underwater operations implies the also increasing availability of multiple AUVs
with different capabilities. Mission management architectures that want to consider the possibility
of using AUVs with heterogeneous capabilities may also rely on using a tightly representation of
the AUVs mission management capabilities by restricting the heterogeneity. Another approach is to
use a well-defined soft representation of a common mission management capability defined for the
architecture, enabling the possibility of using legacy and new AUVs in cooperative missions.

A virtual representation of a physical entity can be described as an abstraction mechanism that
masks the specifics of such a physical entity, providing a common interface to access to its resources.
The use of virtualization for abstracting the capabilities of heterogeneous devices has already been used
in other domains. For instance, in [43], Lucas Martínez et al. described a model for the virtualization
of event sources inspired by the IoT-A domain model [44]. This model, as partially illustrated in
Figure 6, provides the access to the capabilities of a physical entity by the use of the services and
resources exposed through its virtual representation as a virtual entity. With respect to virtualization,
this domain model represents the most usual way for virtualizing physical entities, like AUVs.
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From the global mission management point of view, the use of AUV virtualization may enable
the chance to integrate both legacy and novel AUVs in a cooperative mission, dealing with their
heterogeneity regarding their capabilities by using their virtual representations instead of a direct and
tightly coupled one.

The schema for the assignment of the categories that we have defined for the virtualization feature
is shown in Figure 7. The first category is for architectures that do not mention the use of virtualization
or abstraction methods in regards of mission management. The second category is for architectures that
do not use virtualization or abstraction at all, relying on a tightly coupled integration of the vehicles
within the mission. Architectures in this category can use both homogeneous and heterogeneous
vehicles, requiring for the specific integration of the capabilities of each vehicle. The third category is
for architectures that use virtualization just for homogeneous vehicles using a tightly coupled virtual
representation. The fourth category is for architectures that use virtualization for heterogeneous
vehicles with a tightly coupled virtual representation. And finally, the fifth category is for architectures
that use virtualization for heterogeneous vehicles with a loosely coupled virtual representation. It is
important to notice that architectures within category 2 are similar to architectures in categories 3
and 4, with the difference that architectures in category 2 will not use any virtual representation of
the AUVs, while architectures in categories 3 and 4 will use a virtual representation, although being
tightly coupled to the capabilities of the AUVs. Table 4 summarizes the assessment of the virtualization
feature categories as we have defined it.

Table 4. Virtualization assessment.

Category Description
1 The architecture does not mention vehicle virtualization or vehicle abstraction.
2 The architecture does not use vehicle virtualization, and either every vehicle is

considered to have the same capabilities, or they have capabilities that are tightly
coupled into the architecture.

3 The architecture uses vehicle virtualization, but every vehicle is expected to have the
same capabilities.

4 The architecture uses vehicle virtualization for a set of heterogeneous vehicles with
different capabilities, but using a tightly coupled virtual representation.

5 The architecture uses vehicle virtualization for a set of heterogeneous vehicles with
different capabilities enabling the possibility of including new vehicles in a mission.



www.manaraa.com

Appl. Sci. 2020, 10, 1086 10 of 34
Appl. Sci. 2020, 10, 1086 10 of 36 

 

Figure 7. Diagram for the assignment of categories for the virtualization feature. 

Table 4. Virtualization assessment. 

Category Description 
1 The architecture does not mention vehicle virtualization or vehicle 

abstraction. 
2 The architecture does not use vehicle virtualization, and either every 

vehicle is considered to have the same capabilities, or they have 
capabilities that are tightly coupled into the architecture. 

3 The architecture uses vehicle virtualization, but every vehicle is 
expected to have the same capabilities. 

4 The architecture uses vehicle virtualization for a set of heterogeneous 
vehicles with different capabilities, but using a tightly coupled virtual 
representation. 

5 The architecture uses vehicle virtualization for a set of heterogeneous 
vehicles with different capabilities enabling the possibility of including 
new vehicles in a mission.  

2.4. Mission Plan Dispatching and Execution 

The last feature that we have considered for this survey is related to the way the mission plan is 
dispatched and executed to the AUVs from the global mission management point of view. The 
classical procedure implied to pre-load a pre-defined mission plan in the AUVs before launching 
them [20]. However, the improvement in underwater communications in recent years has the 
potential to consider other ways of dispatching the mission plan to the AUVs participating in a 
mission. 

For this feature, we have identified five possible categories as illustrated in Figure 8. The first 
category, as with the rest of the features considered in this survey, is for architectures that do not give 
a description of how the mission plan is delivered. The second category is for architectures that use 
the preloading of the full mission plan into the AUVs. The third and fourth categories are for 
architectures that include the dispatching of the mission plan from the global mission management, 
either done task-by-task (for the third category) or by sending the full plan (for the fourth category). 
The fifth and last category is for architectures that using an online dispatching from the global 
mission management (categories 3 and 4), also take into consideration the possibility of live updating 
the mission plan. Table 5 summarizes the mission plan dispatching and execution assessment. 

Figure 7. Diagram for the assignment of categories for the virtualization feature.

2.4. Mission Plan Dispatching and Execution

The last feature that we have considered for this survey is related to the way the mission plan is
dispatched and executed to the AUVs from the global mission management point of view. The classical
procedure implied to pre-load a pre-defined mission plan in the AUVs before launching them [20].
However, the improvement in underwater communications in recent years has the potential to consider
other ways of dispatching the mission plan to the AUVs participating in a mission.

For this feature, we have identified five possible categories as illustrated in Figure 8. The first
category, as with the rest of the features considered in this survey, is for architectures that do not give a
description of how the mission plan is delivered. The second category is for architectures that use the
preloading of the full mission plan into the AUVs. The third and fourth categories are for architectures
that include the dispatching of the mission plan from the global mission management, either done
task-by-task (for the third category) or by sending the full plan (for the fourth category). The fifth and
last category is for architectures that using an online dispatching from the global mission management
(categories 3 and 4), also take into consideration the possibility of live updating the mission plan.
Table 5 summarizes the mission plan dispatching and execution assessment.Appl. Sci. 2020, 10, 1086 11 of 36 
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Table 5. Mission plan dispatching and execution assessment.

Category Description
1 The proposal does not mention how the mission plan or the mission plan tasks are

dispatched to the vehicles and/or executed.
2 The mission is fully loaded into the vehicles before launch.
3 The mission plan is dispatched to the vehicles task by task, thus the global mission

manager being responsible for active supervising of the task execution before dispatching
the next task to a vehicle.

4 The mission plan is dispatched completely to the vehicles, thus the supervision of the
execution of each task in the mission plan is done at the vehicle level, and without regards
of if the mission manager is also actively or passively monitoring the execution progress.

5 Same as 3 or 4, but also including the possibility of updating the mission plan in real time
from the global mission manager.

3. Description of the Selected Proposals

A list of well-selected mission planning and management architectures is provided in this section
with brief introductions and comprehensive analyses based on the set of technical features that were
introduced in the previous section. This list presents a holistic view on the status of mission planning
and management architectures. Some of the systems included in the study were not initially conceived
for use with underwater environments. However, all these systems, by focusing just on mission
management, can be easily adapted to different environments. For instance, the teleo-reactive executive
architecture (T-REX) has been successfully implemented for underwater robotics, but also for service
robotics [45]. Even a generic executive reactor for any robotic platform [46] has been developed for the
T-REX architecture. The ROSPlan framework, developed for the robotic operating system (ROS) and
designed for any robotics, was created as part of the PANDORA project for its use with AUVs.

3.1. Teleo-Reactive Executive (T-REX)

The T-REX [47,48] was developed by the Autonomy Group at Monterey Bay Aquarium Research
Institute (MBARI), and has been validated in several real case scenarios. For instance, it has been
successfully used in some of the experiments of the Controlled, Agile, and Novel Ocean Network
(CANON) initiative at MBARI [49,50], as well as other marine and service robotics experiments [45]
and simulations [51]. It also had an executive implementation as a node part of ROS up until the C
Turtle release [52].

The T-REX architecture was conceived as a goal-oriented system, where the typical mission
plan, instead of being a sequence of detailed tasks, it is specified by a sequence of high-level goals
and constraints. The reasoning for this change is to deal with the increasing mission uncertainty in
underwater environments.

The essentials of T-REX are inspired by the sense-plan-act [38] adaptive model, using a number of
concurrent control loops that provide the response to exogenous events and enable the distribution of
the deliberation processes among the components of a T-REX agent. An example of a T-REX agent is
described in [47], and illustrated in Figure 9. In this case the T-REX agent has four components, formerly
named teleo-reactors, or just simply reactors: a mission manager, a science operator, a navigator, and
an executive. Each of the reactors in the figure provide the goals for other reactors (full arrows), and
monitors their current state through the provided observations (dotted arrows).

Each reactor in T-REX is capable of planning the specific tasks to achieve the goals provided, and
to dispatch them to other reactors as their own goals. McGann et al. provided in [53] the example of
an integrated system design with three reactors with their internal main components that is shown
in Figure 10. In this example, we have three reactors in a hierarchical distribution: a vehicle control
subsystem (VCS) at bottom, a navigator at middle, and a mission manager at top. As the figure
illustrates, each reactor receives goals from the reactor in its upper layer reactor, and sends their own
generated goals to its lower layer reactor. At the same time, each reactor receives the observations
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from its lower layer reactor, and generates observations to its upper layer reactor. Each agent has a
local database for storing the received observations, and as shown in the figure, to store also plans,
models and algorithms. The reactors in the example include a planner, a synchronizer and a dispatcher.
The planner uses automated planning techniques for adapting incomplete plans from the database to
the current problem. The synchronizer is used to ensure plan consistency and completeness. Finally,
the dispatcher is a simple algorithm used to publish goals to other reactors.
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The system proposed as an example in Figure 10 can be used as follows: the mission manager
reactor receives the goals to fulfill a mission, for instance, a mission to survey an area. With that
information and the data available in its local database, the mission manager generates a plan with the
navigation steps that is dispatched as goals to the navigator. In turn, the navigator takes these goals,
and using the data available in its local database generates a plan for the VCS consisting on the specific
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commands the vehicle has to execute. As before, the plan generated by the navigator is dispatched to
the VCS as the goals to the VCS.

The dispatching algorithm is ruled by time windows. Each goal has an assigned starting time to
be dispatched to the corresponding reactor. The time is calculated taking into account the latency of
the reactor, its planning horizon and the execution frontier for the current task in execution, if any.

As for the features considered in this survey, in regards to the plan specification feature the T-REX
proposal does not describe how the plan is specified at any level. Therefore, we can only assume that it
is done using an ad-hoc format. This corresponds to a category 2 for this feature. Besides, the use of
multiple reactors allows for a multi-agent structure with a hierarchical mission plan, and the description
of the dispatching algorithm expresses that each task has a temporal constraint. In consequence this
feature has also the “MHT” modifiers, resulting in a final assessment of a category 2MHT.

In regards to the adaptation feature, the literature about the T-REX architecture describes explicitly
that it is based on the “sense-plan-act” self-adaptive model [53]. Specifically, the architecture uses a
partitioned control where each reactor has its own internal self-adaptive loop working in a coordinated
pattern with other reactors. In consequence we assign to T-REX a category 5 in relation to self-adaptation.

With respect to the virtualization feature, the T-REX literature mentions that a T-REX agent uses a
single model for control at various levels of abstraction [48]. However, no specifics are given about
if there is any use of virtualization for the management capabilities of the AUVs participating in a
mission, and as a result, we concede a category 1 in regards of the virtualization feature.

Finally, the dispatching of tasks in T-REX is described in [48]. As we have described previously,
the dispatching of tasks in T-REX is done using time windows, with a new task being dispatched when
the time window starts. Thus, we have assigned a category 3 to the dispatching feature.

A summary of the categorization for the measured features is included in Table 6.

Table 6. T-REX assessment.

Feature Category Explanation
Plan Specification 2MHT The reviewed literature for T-REX does not provide any insights

of how the plan is specified, thus it seems reasonable to assume
that the plan specification is done using an ad-hoc format.
The use of different reactors as agents capable of receiving goals
and generating plans seems compatible to a multi-agent
approach. It also means that the mission plan, seen from the top,
can be considered as a hierarchical plan, since a plan from a
reactor can be seen as the lower-level plan for the goals provided
by another reactor.

Adaptation 5 As T-REX is based in sense-plan-act, it uses self-adaptation by
default. The partitioning of the control loops in the executive is
done using a coordinated pattern.

Virtualization 1 There is no mention to virtualization or abstraction.
Dispatching 3 The dispatcher sends the goals to the corresponding reactors one

by one. It is important to notice that in this case the description
of the algorithm implies that there is no real supervision made
from the upper reactor, and that the dispatching of a new goal is
just ruled by its planned starting time.

3.2. RAUVI Architecture and the Mission Control System (MCS)

The Reconfigurable AUV for Intervention missions (RAUVI) [54] was a research project aimed to
the development of a new reconfigurable AUV capable of performing underwater operations using
a robotic arm [55]. A distributed architecture was proposed [56] and validated through simulations
and experiments in controlled scenarios [57]. The proposed architecture was designed to combine
two pre-existing architectures with a mission control system (MCS), as shown in Figure 11. These two
architectures are the manipulation and the vehicle architectures respectively.
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Figure 11. An overview of the RAUVI software architecture.

The manipulation architecture is aimed to control the robotic arm in the AUV, and consists mainly
of two modules: perception and action. On the other hand, the vehicle architecture is in charge of
ensuring the functionality of the AUV, and includes three main modules: robot interface, perception
and control. The third piece in the proposed distributed architecture is de aforementioned MCS,
in charge of defining the task execution flow to fulfill a mission. A detailed functional diagram
of the proposed architecture is shown in Figure 12. Four main functional blocks are shown in the
diagram. At top sits the MCS, with the Architecture Abstraction Layer. At the bottom, we can find the
manipulator architecture on the left, and the vehicle architecture on the right. Finally, in the middle,
there is a centralized blackboard used as a communication interface between the manipulator and the
vehicle architectures.
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The mission plan in the RAUVI architecture must be provided by the mission programmer using 
a graphical user interface to generate a mission file expressed in XML using a mission control 
language (MCL) [58,59]. The generated file is then parsed by a MCL compiler that generates a Petri 
net mission file. The MCS receives this Petri net file, and executes it through the abstraction layer, 
where every task has the exact same interface, and is dispatched to either the manipulator or the 
vehicle architecture. 

The manipulator architecture receives the tasks through the action layer. This module can 
receive two types of actions: control and perceptual. The control actions are fed to the robot 
abstraction layer, where they are executed by the manipulator robot itself. On the other hand, the 
perceptual actions are feed to the perception layer, updating the robot internal perception. The 
perception layer receives also information from other parts of the manipulator robot, as internal 
perceptions, and from the vehicle architecture through the centralized blackboard, as external 
perceptions. Finally, if some perceptions meet some conditions at the condition layer, an event is sent 
to the MCS through the abstraction layer. 

The vehicle architecture receives the tasks from the MCS in a control module that matches them 
to the primitives that are sent to the coordinator that manages their execution using the vehicle 
velocity controller. Besides the tasks received from the MCS, the vehicle architecture has a perception 
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The mission plan in the RAUVI architecture must be provided by the mission programmer using
a graphical user interface to generate a mission file expressed in XML using a mission control language
(MCL) [58,59]. The generated file is then parsed by a MCL compiler that generates a Petri net mission
file. The MCS receives this Petri net file, and executes it through the abstraction layer, where every task
has the exact same interface, and is dispatched to either the manipulator or the vehicle architecture.

The manipulator architecture receives the tasks through the action layer. This module can receive
two types of actions: control and perceptual. The control actions are fed to the robot abstraction layer,
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where they are executed by the manipulator robot itself. On the other hand, the perceptual actions are
feed to the perception layer, updating the robot internal perception. The perception layer receives also
information from other parts of the manipulator robot, as internal perceptions, and from the vehicle
architecture through the centralized blackboard, as external perceptions. Finally, if some perceptions
meet some conditions at the condition layer, an event is sent to the MCS through the abstraction layer.

The vehicle architecture receives the tasks from the MCS in a control module that matches them
to the primitives that are sent to the coordinator that manages their execution using the vehicle
velocity controller. Besides the tasks received from the MCS, the vehicle architecture has a perception
module that receives internal perceptions from the vehicle navigator and obstacle detector, and external
perceptions from the manipulator architecture through the centralized blackboard. These perceptions
can be used by the primitives in the control module.

Regarding the features being considered in this survey, in RAUVI, the mission file uses an ad
hoc specific format, the MCL. This format follows a deterministic approach, without multi-agent
considerations, hierarchical structure or temporal constraints. Consequently, we have assigned it a
category 2 for the plan specification feature.

With respect to the adaptation feature, there is not mention at all to the use of any self-adaptive
model in the architecture, and we have not been able to identify one. Therefore, we assign it a category
1 for the adaption feature.

In regards to the virtualization feature, the RAUVI architecture specifically mentions the use of
an architecture abstraction layer [56] between the MCS and the vehicle/manipulator architectures.
The purpose of this abstraction layer is to adapt actions and events to and from the corresponding
instances of each architecture. This enables the virtualization of the capabilities of the different
architectures being used, providing a common access to both the manipulator onboard a vehicle, and
the vehicle itself. In consequence we have assigned it a category 5 for the virtualization feature.

Finally, for the dispatching feature, in the RAUVI architecture the mission, once compiled in the
MCL, it is fully loaded into the vehicles before being launched. Therefore, the corresponding category
for the dispatching feature is category 2.

A summary of the categorization for the measured features is included in Table 7.

Table 7. RAUVI architecture assessment.

Figure Category Explanation

Plan
Specification 2

The RAUVI proposal includes the definition of a Mission Control
Language to define the mission tasks of interest in a friendly high-level
language. The mission plan follows a deterministic approach, with no
multi-agent capabilities, no hierarchical decomposition, and no use of
temporal constraints.

Adaptation 1 Self-adaptation is not mentioned in the description of the proposal.

Virtualization 5

According to the description provided in [56] the architecture
abstraction layer is capable of adapting the actions and events to the
corresponding instances of the target architectures, allowing the MCS to
be architecture-independent.

Dispatching 2 The mission is fully loaded into the vehicle before launch [56].

3.3. Intelligent Control Architecture (ICA)

The TRIDENT project [60] explored and proposed a new methodology to provide multipurpose
dexterous manipulation capabilities for intervention operations in unknown, unstructured and
underwater environments. As part of this project the intelligent control architecture (ICA) was
proposed as a novel cognitive control architecture for AUVs [61,62], enabling the use of multiple
vehicles in underwater intervention missions. The ICA was validated in the experiments carried out in
the TRIDENT project, including simulations and real experiments in the sea [63].

An overview of the ICA is shown in Figure 13. The components are distributed as in the usual
three-layer architecture used in robotics. At the deliberation layer, the system uses a hierarchical
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mission plan specified by the main goal and its decomposition in subsequent sub-goals. Each goal is
then planned, producing an agent plan that is a sequence of activities, or command messages. Once an
agent plan is produced, its activities are matched to the available services that can be discovered from
other agents, and that can be either basic or composed services following a service oriented architecture
(SOA) approach [64].
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The ontology of the ICA, as shown in Figure 14, shows the relations among its core elements.
The system, identified as an autonomous maritime robot (AMR) fulfills a mission that has one or more
plans and one or more goals, and that is carried out by an agent. Each goal is achieved by a plan that
involves one or more capabilities. The agents have plans that achieve goals and carry out them by
means of activities that are carried out by services.
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The internal structure of an ICA agent is shown in Figure 15. From the robotics model point of
view, it is composed of five main blocks: the user interface, the deliberation unit, the execution unit,
the behavior unit and the world model.
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The user interface is the block responsible to provide the end user with an interface to manage the
mission and check its progress.

The deliberation unit represents the deliberation layer of a three-layer robotics architecture, and
has three components related to the generation of a mission plan: the mission communicator, used
to communicate with the human operator through the social model; the mission planner, used to
generate the mission plan; and the mission reasoner, used to decide what to do next according to the
data perceived from the sensors.

The execution unit represents the execution layer of three-layer robotics architecture, and is
responsible for the execution of the mission plan through the mission spooler.

The behavior unit represents the behavior layer of three-layer robotics architecture, and is
responsible of executing the commands dispatched by the mission spooler according to the services
available in the agent.

Finally, the world model is a repository composed of three models: the social model that describes
the context for the agent, the mental model, that describes what the agent knows about itself, and the
geospatial model, that contains the environmental data gathered from the sensors.

ICA agents also use a situation awareness [65] approach that uses a decision making cycle defined
as an OODA loop [36]. In this OODA loop, the observation and orientation stages are matched by the
belief blocks at the world model, provided by the social and geospatial models, and the decision and
action stages are matched by the intention block, that is, the mission spooler module.

Regarding the assessment of the features considered in this survey, with respect to the plan
specification feature, the ICA proposal explicitly states that it “moves away from fixed mission plans”.
It does that by including a mission reasoner able to adapt a mission plan based on the current situation
of a mission. However, a mission plan is still generated by the mission planner from a hierarchical
set of goals, although no description is given in the ICA literature about how this mission plan is
specified. Additionally, the ICA architecture provides the mechanisms for using multiple agents
from the operator point of view, assigning specific agent plans to each agent involved in a mission.
As a result, we consider ICA belongs to a category 2MH for the plan specification feature.
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Concerning the adaptation feature, the ICA proposal explicitly mentions the use of a OODA loop
for the decision making cycle embedded in each agent. Therefore, we assign ICA a category 2 for the
adaption feature.

With respect to the virtualization, or any other abstraction mechanism, the ICA literature does
not mention any approach, and none can be identified from the proposal, resulting in a category 1
assignment for this feature.

Finally, although the ICA specifically mentions the use of a mission spooler component that
dispatches the mission plan to the service matchmaker component, there is no description on how this
dispatching is done. In consequence, for the dispatching feature, we assign an ICA with a category 1.

A summary of the categorization for the measured features is included in Table 8.

Table 8. ICA assessment.

Feature Category Explanation

Plan
Specification 2MH

From the architectural overview it is clear that the mission specification
is provided as a hierarchical set of goals used to generate agent plans
that are in essence a sequence of commands without following or
proposing a formal description, and thus using an ad-hoc one. As the
agent plans can be assigned to different agents, we consider that ICA
provides a multi-agent view.

Adaptation 2 ICA includes an OODA loop approach for the situation awareness
performed by an AUV agent.

Virtualization 1 There is no mention to virtualization or abstraction of the agents in the
ICA proposal.

Dispatching 1

Although the internal structure of an ICA agent includes a component
named “Mission Spooler” that feeds the “Service Matchmaker” with the
agent plans, there is no mention to how this agent plans are really
dispatched to the AUV agents.

3.4. SWARMs Architecture

The primary goal of the SWARMs project [66] is to expand the use of underwater and surface
vehicles (AUVs, ROVs, USVs) to facilitate the conception, planning and execution of maritime and
offshore operations and missions. As part of this project a semantic middleware architecture has been
defined, implemented [67], and validated with simulations and real scenarios [68–70]. Figure 16 shows
a detailed functional description of the components that constitute the aforementioned architecture.

The SWARMs middleware components are distributed in four main groups:

• Data management: The components in this group are related to the management of the information
handled in the middleware. They are:

# Two repositories, one for historical data and the other for the SWARMs ontology
# A data access manager for managing the access to the repositories
# A publish/subscription manager for providing access to the Data Distribution Service

(DDS) based communications used in the project.

• High level services: The components in this group are essentially those components accessible
from the application layer, and specifically within the SWARMs project, from the application
known as the mission management tool (MMT). They are:

# The missions and tasks register and reporter (MTRR), that receives the mission plan from
the mission management tool and is in charge of the mission management from within
the middleware.

# The vehicle and service register, that provides information about the available vehicles
and services.
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# The semantic query, which processes the semantic queries made by the MMT.
# The rules and policies creator, that allows the insertion of rules and policies by users.

• Low level services: The components in this group represent the interface between the middleware
and the vehicles, and they are:

# The tasks reporter, which tracks and reports the status of the tasks in a mission.
# The event reporter, which collects the events that occur during a mission.
# The environment reporter, that tracks and periodically reports collected environmental

data relevant for the mission.

• Cross layer services: The components in this group provide services for all the other components
in the middleware, and they are:

# The semantic reasoner, responsible for processing higher level inferences and context
awareness from the context information available in the SWARMs ontology.

# The data pre-processor, that validates the data gathered from the vehicles.
# The security component, responsible for providing a number of security schemes, like data

integrity, authentication, authorization and access identity management.
# The quality of service component, responsible for enabling the quality of service policies

specified by the MMT.
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Regarding the mission planning and management, the mission plan in SWARMs was generated
by a deterministic automated planning algorithm executed from the MMT. The mission plan, specified
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in an ad-hoc format, consists of a sequence of actions, each one assigned to its corresponding vehicle,
allowing for a multi-agent specification. Also, from the point of view of mission planning, the vehicles
in SWARMs can be classified in two categories: those able to plan by themselves how to achieve a goal,
and those that require to be provided with the specific primitive for the action. Therefore, the mission
plan also includes a hierarchical decomposition of the plan, so the MTRR can decide to dispatch to the
vehicles either a high-level mission plan or a low-level one depending on their capabilities.

The MTRR is in essence responsible for the mission management within the SWARMs middleware
architecture, and it has been validated during the SWARMs final trials [71]. Figure 17 illustrates the
relations between the MTRR and other SWARMs components.Appl. Sci. 2020, 10, 1086 21 of 36 
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As explained before, the MTRR receives the mission plan generated at the MMT. Using a tightly
coupled virtualization, the MTRR parses the mission plan, and divides it into vehicle plans, using either
the high-level actions or the low-level ones depending on the capabilities of the assigned vehicles.

The MTRR is capable of dispatching the full plan to the vehicles, or doing it task by task. Indeed,
within the SWARMs project, the dispatching was done task by task due to the restrictions of the
on-board system loaded into the vehicles. To avoid problems with the latency between the ending of
an action, and the dispatching of the next one in the vehicle plan, a pre-buffering technique was used,
where the next action to the current one was also dispatched to the vehicles.
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The MTRR was also responsible for handling the status, events, and environmental reports
received from the vehicles. Whenever an event prevented the execution of part of a plan, the MTRR
notified the MMT so a human operator could decide whether to abort the mission or re-plan it with the
new information sent by the vehicles.

Regarding the assessment of the features considered in this survey, the mission plan specification
in the SWARMs architecture is done using an ad-hoc format that includes capabilities for multi-agent
plans and uses a hierarchical task representation. It also includes temporal estimations for the tasks
durations, but they are not provided as temporal constraints. Consequently, we have assigned it a
category 2MH for the plan specification feature.

With respect to the use of adaptation, each vehicle integrated in SWARMs is capable of performing
certain degree of adaptation during the execution of a mission plan. At the same time the mission
manager can abort a vehicle plan at any time, and re-plan just its part of the mission plan, following a
decentralized hierarchical control pattern for vehicle plan adaptation. Therefore, we have assigned it a
category 4 for the adaptation feature.

The MTRR uses internally a virtualization of the vehicle capabilities with regards to their onboard
planning capabilities. This use of the virtualization paradigm is done using a tightly coupled design,
where the specific capabilities of the vehicles are modeled into their internal virtual representation.
For that reason, we have assigned it a category 4 for the virtualization feature.

Finally, the MTRR can dispatch the mission plan either by sending it a task-by-task to the vehicles,
or sending them the full mission. Hence, we have assigned it a category 4 for the dispatching feature.

A summary of the categorization for the measured features is included in Table 9.

Table 9. SWARMs assessment.

Feature Category Explanation
Plan

Specification 2MH The plan specification within the SWARMs project is done using an
ad-hoc format that includes multi-agent and hierarchical approaches.

Adaptation 4

Each vehicle in SWARMs is capable of performing some adaptation
while executing a mission in order to achieve the assigned tasks.
The mission manager can abort a vehicle plan at any given time while
keeping the rest of the mission plan in execution and re-plan just for
that vehicle.

Virtualization 4 The MTRR in SWARMs uses a basic virtualization approach tightly
coupled to the heterogeneous capabilities of the available vehicles.

Dispatching 4 The MTRR is able to dispatch the actions in the plan to the vehicles
following a task by task approach or sending them the full mission.

3.5. Continuous Planning and Execution Framework (CPEF)

The continuous planning and execution framework (CPEF) [72,73] is a framework designed for the
plan generation, execution, monitoring and repairing aimed to solve complex tasks in unpredictable
and dynamic environments. It was developed as part of the Defense Advanced Research Projects
Agency (DARPA) Joint Forces Air Component Commander (JFACC) program, and validated through
several demonstrations [74–77]. Although it was conceived for its use with UAVs, the proposed design
for the framework could be of use for any other application domain.

Figure 18 shows the functional overview of the six components that make up CPEF. The Plan
Manager is the core component, responsible for the control of the system. It is in charge of controlling the
generation of plans, supervise their execution, provide knowledge for both plans and plan executions,
respond to unexpected events and control the adaptation of the plan in the event of plan failures that
require plan updates. The supervision of the execution of the plans from the plan manager uses a flow
model in which the plan manager waits for the outcome of individual action.
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Besides the tracking of the execution through the flow control model used in the plan manager,
CPEF resorts to the use of monitors, defined as event-response rules. These monitors can trigger the
execution of a predefined response whenever they detect a specific event. There are three main
categories of monitors defined in CPEF:

• Failure monitors: They provide the responses to the failures that can happen while a plan is
being executed.

• Knowledge monitors: They provide the responses for decision-making regarding the changes in
the world-state.

• Assumption monitors: They provide the responses for changes in the situation of the plan
execution that violate the assumptions on which the plan relies.

Regarding adaption, CPEF, using the monitors already described, defines generalized failure
models for assessing the detected fails, and deciding if they are relevant enough to require for the
repairing of the plan in execution.

As for the features considered in this survey, the literature about CPEF does not provide a
description about the mission plan specification, and therefore the category for the plan specification is
category 1.

In regards to the adaptation feature, the CPEF proposal explicitly mentions that the plan manager
is able to adapt the plan to the events that trigger the plan repair mechanism. This adaptation is made
at the agents implementing the CPEF architecture, without specific mention to the use of a possible
decentralized control pattern. Therefore, the category we have assigned to CPEF for the adaptation
feature is category 3.

As with the plan specification feature, CPEF does not describe any virtualization or abstraction
mechanism, subsequently being categorized as category 1 for the virtualization feature.

Finally, the reviewed material about CPEF does not include how the mission plan is dispatched to
the agents. However, it is explicitly explained that the plan manager uses a flow model waiting for the
status reports of each task in the mission plan before dispatching the next one. Thus, we have assigned
CPEF with a category 3 for the dispatching feature.

A summary of the categorization for the measured features is included in Table 10.
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Table 10. CPEF assessment.

Feature Category Explanation
Plan

Specification
1 The description of CPEF does not include a reference of how the plan

has to be specified. Further, the proposal of CPEF predates the
specification of PDDL and its updates and extensions, as well as RDDL.

Adaptation 3 The plan manager in CPEF is able to adapt the plan to the events if they
trigger the need for repairing the plan. However there is no mention
about the use of adaptation in the agents executing the plan.

Virtualization 1 There is no mention in the proposal about the use of virtualization or
abstraction of the agents executing the plan.

Dispatching 3 Although there is no specific mention on how the plan is dispatched to
the agents, CPEF proposal mentions that the plan manager uses a flow
model in which it waits for the status reports of each individual action
in the plan.

3.6. Technologies for Reliable Autonomous Control (TRAC)

The technologies for reliable autonomous control (TRAC) of UAVs was developed as part of
a DARPA effort under the Software Enabled Control (SEC) initiative [78]. It was created to enable
greater mission capability, higher reliability and safety, and greater adaptability to vehicle and mission
environment variability, and was in essence the same as the reliable autonomous control technologies
(ReACT) for AUVs created by the same authors as a NASA effort for the revolutionary concepts
(RevCon) initiative [79]. TRAC/ReACT were developed and demonstrated through simulations [80]
and real scenarios demonstrations [79].

As with CPEF, TRAC was not intended for being used in underwater missions. However, some
of the concepts introduced by TRAC could be of interest when designing a mission planning and
management architecture for underwater operations. Figure 19 illustrates the functional architecture
of TRAC.
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• A beacon-based exception analysis for maintenance (BEAM) that monitors the data bus and
detects anomalies, and isolates and characterizes failures.

• A spacecraft health inference engine (SHINE), used in conjunction with BEAM for diagnosis
and prognosis.

• A closed loop execution and recovery (CLEaR) that provides high-level mission plan management
and generates the sequence of commands to the UAV to execute the mission plan.

• An autonomous command executive (ACE) that supervises the execution of the mission plan
created by the CLEaR component.

These four components are linked together through the active state cache, which is a data exchange
repository for keeping and synchronizing all global information regarding the mission.

The CLEaR component later evolved as an independent framework [81], is just in charge of
generating the mission plan and coordinate a goal-driven and event-driven behavior. This is partially
done by sharing plan information and continuous status updates both with the planner and the
executive. The decision about if a plan conflict must be handled by the planner or by the executive is
provided by some heuristics that depend on the mission and the domain.

The other relevant component from the mission management point of view is the ACE [80].
Figure 20 shows the functions performed by ACE, and how they are related to each other.
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As illustrated, ACE includes an action manager that receives the actions from the planner requests
and the unplanned events to be handled. The action manager is responsible for the execution of the
actions in the vehicles through the VMS, and for the decision making about the unexpected events.
If an event prevents the normal completion of an action, the action manager will notify the planner, so
a new plan can be generated if required to fulfill the mission.

Figure 21 shows the components of the action manager within ACE. Each component is responsible
for sampling the current state at the assigned step and calculating if a reaction is needed taking into
account the operational limits.

The TRAC description does not mention how the mission plan is specified, and therefore we have
assigned it a category 1 for the plan specification feature.

Regarding the adaptation feature, the TRAC proposal does also not mention the use of any
self-adaptive model. However, the proposed architecture is continuously evaluating the current state
of the system, triggering the re-planning of the mission plan if required, both at the mission control
(global mission management), and at the vehicles, in a collaborative way. Hence, we have assigned
TRAC a category 5 for the self-adaptation feature.

As with the plan specification, the TRAC proposal does not mention any kind of virtualization or
abstraction. Therefore, we have assigned a category 1 for the virtualization feature.
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Finally, although it is not explicitly explained in the proposal, the description of the ACE component
of the TRAC architecture seems to use a task-by-task dispatching. In consequence, we have assigned it
a category 3 for the dispatching feature.Appl. Sci. 2020, 10, 1086 26 of 36 
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Table 11. TRAC assessment.

Feature Category Explanation
Plan

Specification
1 The proposal does not imply the use of a predefined mission

plan specification.
Adaptation 5 Although there is no clear mention to the use of self-adaptation, the

TRAC architecture evaluates the current state of the system
continuously, allowing for the re-planning of the mission plan if
required, both at the mission control and at the vehicles.

Virtualization 1 There is no mention to the use of virtualization or abstraction of the
vehicles capabilities.

Dispatching 3 From the ACE description it seems that the dispatching of the actions to
the vehicles is performed task by task.

3.7. ROSPlan

ROSPlan [82] is a framework that, according to their authors, provide a collection of tools for AI
planning in a ROS system. Although ROSPlan is designed for any robotics, it was originally developed
for the PANDORA [83] project for its use with AUVs, and was validated in the experiments that were
carried out in said project [84].

ROSPlan uses a modular design where a number of ROS nodes provide the functionalities for
planning, problem generation and plan execution. Initially presented in [85], in June 2018 a complete
new version was presented.

The components of ROSPlan are defined as ROS nodes, and the general overview of the system is
shown in Figure 22. There are five ROS nodes defined [86]:

• The knowledge base, used to store plan models using PDDL.
• The problem interface, used to generate the description of a problem using PDDL, and publish it

on a ROS topic or write it to a file.
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• The planner interface, used to invoke a planner and either publish the resulting plan to a ROS
topic, or write it to a file.

• The parsing interface, used to translate a PDDL plan into ROS messages.
• The plan dispatch, which is responsible for the plan execution.
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In ROSPlan the process starts by the specification of a problem as a PDDL problem instance
using the Problem Interface node and the knowledge base. When the problem description is available,
it is published to a ROS topic. A planner interface subscribed to that topic will receive the problem
description, and using an AI planner will try to find a solution. If the planner is successful, the solution
is published to another ROS topic. In this case it will be addressed to a subscribed parsing interface
that will process the published solution to generete a plan representation that can be a petri-net plan,
an ESTEREL plan, or a sequential plan. This plan representation is again published to another ROS
topic addressed to a subscribed plan disptach. The plan dispatch receives the plan as a whole, and
dispatches each action individually. A diagram for the plan dispatch node is shown in Figure 23.Appl. Sci. 2020, 10, 1086 28 of 36 
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Regarding the assessment of the features considered in this survey, the ROSPlan proposal is quite
clear in the use of PDDL for the specification of the mission plans. There have been some efforts on
developing additional ROS nodes capable for handling probabilistic plans described with RDDL [87],
but they are not still part of the ROSPlan framework. Therefore, we have assigned it with a category 3
for the plan specification feature.

However, ROSPlan does not describe either an adaptation or a virtualization mechanism. Therefore,
we have assigned a category 1 for both the adaptation and the virtualization features.

Finally, the dispatch of the tasks in the mission plan is done in a sequential way, and subsequently
we have assigned a category 3 for the dispatching feature.

A summary of the categorization for the measured features is included in Table 12.

Table 12. ROSPlan assessment.

Feature Category Explanation
Plan

Specification 3 All the plans managed by ROSPlan are described using PDDL.

Adaptation 1 There is no mention to any self-adaption capabilities provided by ROSPlan,
and none can be identified from the proposal description.

Virtualization 1 There is no mention to any kid of virtualization or abstraction of the vehicles

Dispatching 3
The actions are dispatched one by one in a sequential way. The Plan Dispatch
node just returns an error if a failure occurs while execution a plan, or a success
message if all the actions in the plan are successfully executed.

4. Main Issues and Challenges

After presenting and introducing the selected architectures and frameworks individually in the
previous section, it is of interest to make a comparison of them to have a clearer understanding of the
status of mission planning and management solutions used for underwater robotics, and even in other
domains. A summary of the presented architectures and frameworks is discussed in Section 4.1, and
the challenges identified are discussed in Section 4.2.

4.1. Comparisons of the Proposals

In order to consider the overall assessment that has been done with all the proposals, Table 13
shows the categories for each one according to the criteria that were described in Section 2.

Table 13. Comparisons of categories assigned to the reviewed architectures and frameworks.

Architectures Plan Specification Adaptation Virtualization Dispatching
T-REX 2MHT 5 1 3
RAUVI 2 1 5 2

ICA 2MH 2 1 1
SWARMs 2MH 4 4 4

CPEF 1 3 1 3
TRAC 1 5 1 3

ROSPlan 3 1 1 3

When looking at Table 13 it is important to recall that a lower category does not necessarily
mean a lower achievement at the specific feature. It is normal that different scenarios have different
requirements, thus needing different capabilities on the selected features. However, it is quite
remarkable that none of the architectures and frameworks evaluated have considered the use of
probabilistic planning. Most of the solutions to deal with the unreliable nature of the underwater
environment are related to react to unexpected events, either at the vehicle level or at the global mission
control level. Continuing with planning, it is interesting that only three of the selected architectures,
T-REX, ICA and SWARMs consider the use of multi-agent planning and hierarchical planning, and
only T-REX included temporal constraints in the mission plan.
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The same can be said about the virtualization of the vehicles from the point of view of mission
management. Only two of the presented architectures, RAUVI and SWARMs, defined some mechanism
to virtualize or abstract the vehicles capabilities. And this can be a potential issue to adapt the
architecture to work with new vehicles with different capabilities.

Regarding the adaptation, there is greater diversity. TRAC describes an adaptation mechanism
where the information is shared among all the agents in the architecture and the adaptation is performed
using a decentralized control pattern. T-REX also mentions the use of a coordination control using
self-adaptive loops at the reactors level. SWARMs also share information among the agents, but the
decision to adapt is taken independently by each agent. In CPEF, the adaptation of the mission is only
mentioned at the plan management level, while in ICA it is only mentioned at the vehicle level. Finally,
RAUVI and ROSPlan do not mention adaptation at all, and the use of adaptation models cannot be
inferred from their description.

Finally, regarding the dispatching of the mission plan to the vehicles, there is a great variance for
the architectures designed for specific use of underwater vehicles (T-REX, RAUVI, ICA and SWARMs).
On the other hand, CPEF, TRAC and ROSPlan all use a task-by-task dispatch, possibly because they
are not considering the constrained nature of underwater communications. Further, only SWARMs
described the possibility of using either a task-by-task or a full mission dispatch from the global
mission manager.

4.2. Open Issues

Based on the analyses on the mission planning and managing architectures, a set of challenges
have been identified and discussed as open issues in the following subsections.

4.2.1. High Dependency on Deterministic Plans for Non-Deterministic Environments

Probabilistic planning is hard. Instead of generating a sequence of actions, tasks, or even goals,
a probabilistic plan has to provide a policy, that is, a function that given a state returns the next action
with higher probability and reward to reach another state. However, an agent using a deterministic plan
in an uncertain environment cannot guarantee to satisfy its goals [18]. As the underwater environment
is not only uncertain, but also unreliable and prone to unpredictable events, the typical approach
has been to use a deterministic plan to set the sequence of actions to achieve the desired goals, and
also use a subsumption [88] architecture where the agents react to the unexpected events and try to
adapt themselves to continue with the plan. The problem is when the plan cannot be fulfilled, and a
new mission plan has to be created, either for repairing the current plan, or to just re-plan a whole
new mission.

The use of other approaches for planning under uncertainty can provide an extra mechanism to
improve the response to unexpected events that can be characterized with a stochastic model.

4.2.2. Lack of a Common Specification for Mission Plans

Continuing with planning, most architectures use an ad-hoc mission plan specification, preventing
its resue in other projects. It is true that there are formal description languages from the automatic
planning domain, like PDDL and RDDL that could be used. But it is also true that those languages
are hard to understand for non-experts in automated planning. In addition, an interesting thought
about the specification of the mission plan, including the mission domain and mission problem, is that
nowadays systems also use context awareness descriptions that should be synchronized to the domain
description of the problem. That being said, it could be worth to consider not only the specification of
a common description language for mission plans, but also a mediator component integrated with the
mission manager and the context manager that could adapt the descriptions in different formats to
the needs of the components that will use them (like mission planners and reasoners), keeping the
information synchronized for every participating agent.
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4.2.3. Lack of Decentralized Self-Adaptive Control

Self-adaptation should be considered both at the agents executing the mission plan and at the
global mission manager, both independently and coordinately. In general, self-adaption is only
considered either at the vehicles, for adapting themselves while executing a mission to still be able
to achieve the goal, or at the mission management, for re-planning when the outcomes of a task in
a mission deviates enough to require a new plan. However, it could be interesting to explore the
managing-managed approach from MAPE-K allowing the mission manager not only to react to events
notified by the vehicles, but also to update the mission plan if there is new information from other
sources that suggest that the update will improve the mission outcome.

4.2.4. Tightly coupling of the mission management to the specific vehicles

In general, the reviewed architectures generate mission plans that are tightly coupled to the
vehicles that are being used in their respective projects, or are too generic to delegate the responsibility
of matching the vehicles capabilities to the specific implementation for each scenario. However, to
improve the reusability of the proposed architectures, a virtualization approach should be considered.
By using a virtual representation of the vehicles within the scope of the architecture, it is possible to
integrate new and legacy vehicles by just implementing an adaptor that on the on the one side matches
to the specifics of the vehicle, and on other side matches the ones of the virtual model defined for
the architecture.

5. Conclusions and Future Works

This paper presented a survey on the mission planning and management architectures for
underwater cooperative robotics. Before exploring the mission planning and management details
the architectures explored in the survey, a set of four features have been identified: mission plan
specification, self-adaptation, virtualization, and mission plan dispatching and execution. Accordingly,
we have defined a set of categories for each feature to facilitate the assessment of the explored features.

This survey differs from others as it focuses mainly in the mission planning and management, but
also in the set of features considered for the comparison among the different architectures.

An assessment of the selected architectures based on the chosen features has been carried out.
From the results, we cannot ignore that despite these architectures have been used successfully, there
are still problems related to the mission management that have to be faced in future improvements
and new designs. It can be foreseen that future works improving the current mission planning and
management for cooperative robotics, in underwater environments or in any other unreliable and
uncertain domain, or any new mission manager designed from the scratch should emphasize in the
following aspects:

• The use of a formal mission plan specification would allow, or at least facilitate, the reuse of the
mission planning and management in other domains of application, requiring only minor changes.

• Self-adaptation should be considered at every level of the architecture, including the AUVs, the
mission manager, and the whole architecture. A decentralized control for self-adaptive systems
should be taken into account.

• Virtualization, or at least the abstraction of the agents’ capabilities should be taken into account to
allow for the reusability of the mission manage with legacy and new systems, requiring only to
implement the corresponding adapter for each new agent as a virtual representation.

• Dispatching and execution of the mission plan should be defined carefully, and taking into account
the limitations of the environment in which the agents will execute the mission plan, and also
some other security and safety concerns that may prevent an agent to be able to receive subsequent
tasks in a mission plan.

• Additionally, it could be of interest to explore the use of probabilistic planning for uncertain
environments, as well as other techniques that do not rely only on the use of a subsumption approach.
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